
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Main Idea

University of California, Santa Cruz

Iman Nodozi (inodozi@ucsc.edu), Abhishek Halder (ahalder@ucsc.edu)
Wasserstein Consensus ADMM

Proposed Consensus ADMM (contd.)

Split free energy functionals:

 Distributed Wasserstein prox time updates of ∴ ≈Wasserstein Consensus ADMM A PREPRINT

�i(·) = Fi(·) +
R
⌫ki d(·) PDE in (10) Name

R
Rd

�
V (✓) + ⌫ki (✓)

�
dµi(✓)

@eµi

@t
= r ·

�
eµi

�
rV +r⌫ki

��
Liouville equation

R
Rd

�
⌫ki (✓) + ��1 logµi(✓)

�
dµi(✓)

@eµi

@t
= r ·

�
eµir⌫ki

�
+ ��1�eµi Fokker-Planck equation

R
Rd ⌫ki (✓)dµi(✓) +

R
R2d U(✓,�)dµi(✓)dµi(�)

@eµi

@t
= r ·

�
eµi

�
r⌫ki +r (U �⇤ eµi)

��
Propagation of chaos equation

R
Rd

⇣
⌫ki (✓) +

��1

m�11
>µm

i

⌘
dµi(✓),m > 1

@eµi

@t
= r ·

�
eµir⌫ki

�
+ ��1�eµm

i Porous medium equation

Table 1: Specific instances of the PDE in (10) for different choices of Fi, and hence �i. The Euclidean gradient operator r is w.r.t.
✓ 2 Rd. The operator �⇤ can be seen as a generalized convolution, given by (U �⇤ eµi)(✓) :=

R
Rd U(✓,�)deµi(�) where U(✓,�)

is symmetric and positive definite for all (✓,�) 2 Rd ⇥ Rd.

important difference arises in (7b) compared to its Euclidean counterpart due to the sum of squares of Wasserstein
distances. In the Euclidean case, the corresponding z update can be analytically performed in terms of the arithmetic
mean of the x updates. While (7b) does involve a generalized mean of the updates from (7a), we now have Wasserstein

barycentric proximal of a linear functional. In other words, (7b) amounts to computing the Wasserstein barycenter of n
measures {µk+1

1 , . . . , µk+1
n } with a linear regularization involving ⌫ksum.

The proximal updates (7a) are closely related to the Wasserstein gradient flows [3], [38, Ch. 23], [35] generated by the
respective (scaled) free energy functionals

�i(µi) := Fi(µi) +

Z

Rd

⌫ki dµi, µi 2 P2(Rd), i 2 [n].

Specifically, consider the Wasserstein gradient [3, Ch. 8] of the functional �i : P2

�
Rd

�
7! R, denoted as rW�i,

evaluated at eµi 2 P2(Rd), given by

r
W�i (eµi) := �r ·

✓
eµir

��i

�eµi

◆
, i 2 [n],

where r denotes the d dimensional Euclidean gradient, and �
�eµi

denotes the functional derivative w.r.t. eµi. Under TBD
ASSUMPTIONS on �i, as 1/↵ # 0, the sequence {µk

i (↵)}k2N0 generated by the proximal updates (7a) converge to
the measure-valued solution trajectory eµi(t, ·), t 2 [0,1), generated by the initial value problems (IVPs)

@eµi

@t
= �r

W�i (eµi) , eµi(t = 0, ·) = eµ0
i (·), i 2 [n]. (10)

Thus, in a rather generic setting, performing the proximal updates (7a) in parallel across the index i 2 [n], amounts to
performing distributed time updates for the approximate transient solutions of the IVPs (10).

For specific choices of i 2 [n], important examples of Fi include
R
V (✓)dµi(✓) (potential energy for some suitable

advection potential V), ��1
R
logµi(✓)dµi(✓) (internal energy with the “inverse temperature” parameter � > 0),R

R2d U(✓,�)dµi(✓)dµi(�) (interaction energy for some symmetric positive definite interaction potential U). In Table
1, we summarize how the PDE in (10) specializes in such cases. An interesting observation for (7a) is that for each
i 2 [n], the dual variables ⌫ki contribute as time-varying advection potentials irrespective of whether Fi already has an
advection potential or not.

To have an overall overview of the architecture of the proposed algorithm, look at the block diagram given in Fig. 1. As
shown in this block diagram, we have a central processor and n distributed processors. Here, we consider n = 3, but
n can be extended to any finite number. The central processor updates ⇣k+1. We call the upstairs of the distributed
processors (lighter shade) as outer layer ADMM, and it is assigned to update µk+1

i . It gets updated ⇣k+1 from the
central processor and passes the updated µk+1

i to the central processor and also to the inner layer ADMM (darker shade)
in the downstairs of the distributed processors . In Section 4.2, we show that updating ⇣k+1 is a two-step process. First,
we solve a scaled ADMM problem, and then, having the minimizer of this scaled ADMM problem, we update ⇣k+1

with an analytic equation. We call this scaled ADMM problem the inner layer ADMM and solve it at the distributed
processors.

3

Examples:

33

Overall SchematicWasserstein Consensus ADMM A PREPRINT

Inner layer
ADMM

Outer layer
ADMM

Inner layer
ADMM

Outer layer
ADMM

�k+11

�k+12

�k+13

�k+1

�k+1

�k+1Central
Processor

Distributed Processor #1

Inner layer
ADMM

Outer layer
ADMM

Distributed Processor #2 Distributed Processor #3

Inner ADMM minimizer #2

Inner ADMM minimizer #1

Inner ADMM minimizer #3

�k+11 �k+12 �k+13

Figure 1: General schematic of the proposed distributed computational framework.

3 Background and Contributions

3.1 Preliminaries

Wasserstein distance and Sinkhorn regularization. The squared 2-Wasserstein distance between a pair of probability
measures µx, µy 2 P2

�
Rd

�
, is defined as

W 2 (µx, µy) := inf
⇡2⇧(µx,µy)

Z

R2d

c (x,y) d⇡(x,y), (11)

where ⇧ (µx, µy) is the set of joint probability measures or couplings over the product space R2d, having x marginal
µx, and y marginal µy. We use the ground cost c (x,y) := kx� yk22 (the squared Euclidean distance in Rd). With
slight abuse of nomenclature, we henceforth refer to (11) as the “squared Wasserstein distance” dropping the prefix 2. It
is well-known [37, Ch. 7] that the Wasserstein distance W defines a metric on P2

�
Rd

�
. The minimizer ⇡opt is referred

to as the optimal transportation plan, and if µ 2 P2,ac(Rd), then ⇡opt is supported on the graph of the optimal transport

map T opt pushing µx to µy .

Given a strictly convex regularizer R(·), and a reference probability measure ⇡0 over R2d, consider the regularized

squared Wasserstein distance

W 2
" (µx, µy) := inf

⇡2⇧(µx,µy)
⇡ is absolutely continuous w.r.t. ⇡0

Z

R2d

c (x,y) d⇡(x,y) + "

Z

R2d

R

✓
d⇡

d⇡0

◆
d⇡0(x,y) (12)

where " > 0 is a regularization parameter, and
d⇡

d⇡0
denotes the Radon-Nikodym derivative. Examples of ⇡0 include

the product measure µx(x)µy(y) [25] and the uniform measure [21]. In this paper, we consider the entropic regularizer

R(x) := x log x� x for x � 0, with the convention 0 log 0 = 0. (13)

The work in [21] considered the discrete version of (12) with an entropic regularizer R as above, and named it as
the Sinkhorn divergence. This entropy or Sinkhorn regularized squared Wasserstein distance has found widespread
applications in the computation and analysis of variational problems involving the Wasserstein distance (see e.g.,
[7, 17, 22, 33]), and will be useful in our development too.

4

Examples:

Experiment #1

Experiment #2

Proposed Consensus ADMM

26

where i ∈ [n], k ∈ ℕ0

Experiment #2 (contd.) Centralized computation:

Aggregation-drift-diffusion nonlinear PDE

Distributed computation:

Carrillo, Craig, Wang and Wei, FOCM, 2021

lim
β−1↓0

μ∞ = Unif ($)

Annulus with inner radius 1/2 and outer radius 5/2

Wasserstein Consensus ADMM A PREPRINT

Figure 7: Wasserstein distance between the solution
of (41a) i.e. µk

1 , and the solution of (43b) i.e. µk
2 .

where the drift potential vector Vk 2 RN and the symmetric
matrix Uk are given by Vk(i) := V

�
xi
k

�
, i = 1, . . . , N and

Uk(i, j) := U
⇣
xi
k � xj

k

⌘
, i, j = 1, . . . , N . Then, like the

previous example we artificially relabeled the argument of the
functionals F1 and F2 as µ1 and µ2, respectively. Because F1

is linear in µ1, we use (23) with �1(µ1) = hUkµ1 + ⌫k
1 ,µ1i

to analytically compute the proximal update µk+1
1 . We define

G2(µ2) := F2(µ2)+ h⌫k
2 ,µ2i = hVk+��11>µ2+⌫k

2 ,µ2i,
and compute the proximal update µk+1

2 by (22). Using (27), we
modify the PROXRECUR algorithm given in [14, Sec. III-B.1]
and solve the proximal recursion for the porous medium equation.

The resulting evolution of µ1 and µ2 are shown in Fig. 8; it can be seen that after 10000 iterations of the outer layer
ADMM (19), both µ1 and µ2, tend to the known stationary solution (torus with inner and outer radius of 0.5 and

q
5
4).

The Wasserstein distance between the solution of (43a) i.e. µk
1 and the solution of (43b) i.e. µk

2 is shown in Fig. 7. All
the simulation parameters and the initial distributions are the same as the previous example and the average time in five
simulations is 430.085 sec.

(a) Contour plots of the transient solution of the joint measure µ1

(b) Contour plots of the transient solution of the joint measure µ2

Figure 8: Evolution of the solution to the aggregation-drift equations (42), with U(x) = |x|2/2� ln(|x|) and V (x) = � 1
4 ln(|x|).

The computational domain is [�2, 2]⇥ [�2, 2]. The color denotes the value of the plotted variable; see colorbar (dark red = high,
light yellow = low).

6 Conclusions

References

[1] Martial Agueh and Guillaume Carlier. Barycenters in the Wasserstein space. SIAM Journal on Mathematical

Analysis, 43(2):904–924, 2011.

[2] David Alvarez-Melis, Yair Schiff, and Youssef Mroueh. Optimizing functionals on the space of probabilities with
input convex neural networks. arXiv preprint arXiv:2106.00774, 2021.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space of

probability measures. Springer Science & Business Media, 2008.

[4] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on Machine

Learning, pages 146–155. PMLR, 2017.

[5] HH Bauschke and SG Kruk. Reflection-projection method for convex feasibility problems with an obtuse cone.
Journal of Optimization Theory and Applications, 120(3):503–531, 2004.

14

40

Wasserstein distanceOur Present Work: Distributed Algorithm

25

Main idea:

⇝
re-write

Define Wasserstein augmented Lagrangian:

regularization > 0 Lagrange multipliers Experiment #1

Schematic

Wasserstein distance

Proposed Consensus ADMM

27

where i ∈ [n], k ∈ ℕ0

Define

and simplify the recursions to

Experiment #1 Proximal Prediction: 2D Nonlinear Non-GaussianProximal Propagation: Nonlinear non-Gaussian
Caluya and Halder, IEEE Trans. Automatic Control, 2019

Centralized computation:

Wasserstein Consensus ADMM A PREPRINT

Figure 5: Wasserstein distance between the solution
of (41a) i.e. µk

1 and the solution of (41b) i.e. µk
2 .

The resulting evolution of µ1 and µ2 are shown in Fig. 6; it
can be seen that after 5000 iterations of the outer layer ADMM
(19), both µ1 and µ2, tend to the known stationary solution µ1
given in Fig. 4. The Wasserstein distance between the solution
of (41a) i.e. µk

1 and the solution of (41b) i.e. µk
2 is shown in

5. Because we start from the same initial distribution for µ1

and µ2, W (µk
1 ,µ

k
2) at k = 0 is zero. We solve (39a) via the

gradient descent method with a fixed step size as 0.001. The
number of iterations of the inner layer ADMM given in (39)
is 3. The average time in five simulations is 323.51 sec. It is
remarkable that all simulations are performed on a same MacBook Air with Intel Core i5 CPU, 1.1 GHz, and 8 GB
RAM.

(a) Contour plots of the transient solution of the joint measure µ1

(b) Contour plots of the transient solution of the joint measure µ2

Figure 6: Evolution of the solution to the linear Fokker–Planck equation (40), with V (x1, x2) = 1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
. The

computational domain is [�2, 2]⇥ [�2, 2]. The color denotes the value of the plotted variable; see colorbar (dark red = high, light
yellow = low).

5.2 Aggregation Drift Equation

Next we consider a aggregation-drift equations of the form

@µ

@t
= r · (µrU �⇤ µ) +r · (µrV) (42)

where U(x) = |x|2/2� ln(|x|) and V (x) = �
1
4 ln(|x|). As shown in [20], the stationary measure, µ1(x), is a torus

with the inner and outer radius of Ri =
q

1
4 , and Ro =

q
1
4 + 1, respectively. As explained in [18], to avoid the

possible overshoot at the boundary, an artificial diffusion term as ��1�µ2 is added to the RHS of (42).

So, in this example we have three terms (interaction, drift, and diffusion). We choose to split (42) with the extra artificial
diffusion term to two as follow

@tµ = r · (µrU �⇤ µ)| {z }
i=1

+r · (µrV) + ��1�µ2

| {z }
i=2

.

So, n = 2 and by looking at Table 1, we chose

F1(µ) = hUkµ,µi (43a)

F2(µ) =
⌦
Vk + ��11>µ,µ

↵
(43b)

13

Linear Fokker-Planck-Kolmogorov PDE

Wasserstein Consensus ADMM A PREPRINT

�k+11

�k+12
�k+13uopt1

uopt3

uopt2

�k+1

�k+1

�k+1(34)

proxW�
1
� �1

(.)

1 step delay

(19c)

(�k1, �k, �k1)

�k+11

�k+11

�k1

prox���2
1
� f1

(.)

1 step delay

(39b)

(39c)

u�+11

(u�1 , z�, �̃�1)

z�+11
�̃�+11

�k+11

uopt1

proxW�
1
� �2

(.)

1 step delay

(19c)

(�k2, �k, �k2)

�k+12

�k+12

�k2

prox���2
1
� f2

(.)

1 step delay

(39b)

(39c)

u�+12

(u�2 , z�, �̃�2)

z�+12
�̃�+12

�k+12

uopt2

proxW�
1
� �3

(.)

1 step delay

(19c)

(�k3, �k, �k3)

�k+13

�k+13

�k3

prox���2
1
� f3

(.)

1 step delay

(39b)

(39c)

u�+13

(u�3 , z�, �̃�3)

z�+13
�̃�+13

�k+13

uopt3

1
n

n

∑
i=1

u�+1
i

Figure 3: Schematic of the proposed distributed computational framework.

@µ

@t
= r · (µrV) + ��1�µ, µ(x, 0) = µ0(x) (40)

where V (x1, x2) =
1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
and x = (x1, x2) 2 [�2, 2]2. As shown in [14], the stationary measure

is µ1(x) / exp(��V (x))dx, which for our choice of V , is bimodal (see Fig. 4).

Figure 4: The analytical stationary solution
for the FPK equation (40), given by µ1 =
1
Z exp

�
��

�
(1 + x4

1)/4 + (x2
2 � x2

1)/2
��

dx, where
Z is the normalization constant.

Here, n = 2 and by looking at Table 1, we chose

F1(µ) = hVk,µi (41a)

F2(µ) =
⌦
��1 logµ,µ

↵
(41b)

where the drift potential vector Vk 2 RN is given by Vk(i) :=
V
�
xi
k

�
, i = 1, . . . , N . Then, we artificially relabeled the

argument of the functionals F1 and F2 as µ1 and µ2, re-
spectively. Because F1 is linear in µ1, we use (23) with
�1(µ) = hVk�1+⌫k

1 ,µi to analytically compute the proximal
update µk+1

1 . The simulation parameters are considered to be
↵ = 12, ⌧ = 150, � = 1, and " = 5 ⇥ 10�2. We define
G2(µ2) := F2(µ2)+ h⌫k

2 ,µ2i = h��1 logµ2 +⌫k
2 ,µ2i, and

compute the proximal update µk+1
2 by (22). In this case, we

use the PROXRECUR algorithm from [14, Sec. III-B.1] with
algorithmic parameters, � = 10�4, � = 1, and L = 20 to solve
(22). Note that here instead of %k�1 as the first argument of the PROXRECUR algorithm in [14, Sec. III-B.1], we have
⇣k. For doing so, we generate N = 1681 samples from the initial distribution

µ0 =
1

5
N (m1,⌃) +

1

5
N (m2,⌃) +

1

5
N (m3,⌃) +

1

5
N (m4,⌃) +

1

5
N (m5,⌃)

with m1 = (1, 1)>, m2 = (�1,�1)>,m3 = (1,�1)>, m4 = (�1, 1)>, m5 = (0, 0)>, and ⌃ = 0.1I2. We use
N (m,⌃) to denote a multivariate Gaussian distribution with mean vector m and covariance matrix ⌃.

12

Wasserstein Consensus ADMM A PREPRINT

�k+11

�k+12
�k+13uopt1

uopt3

uopt2

�k+1

�k+1

�k+1(34)

proxW�
1
� �1

(.)

1 step delay

(19c)

(�k1, �k, �k1)

�k+11

�k+11

�k1

prox���2
1
� f1

(.)

1 step delay

(39b)

(39c)

u�+11

(u�1 , z�, �̃�1)

z�+11
�̃�+11

�k+11

uopt1

proxW�
1
� �2

(.)

1 step delay

(19c)

(�k2, �k, �k2)

�k+12

�k+12

�k2

prox���2
1
� f2

(.)

1 step delay

(39b)

(39c)

u�+12

(u�2 , z�, �̃�2)

z�+12
�̃�+12

�k+12

uopt2

proxW�
1
� �3

(.)

1 step delay

(19c)

(�k3, �k, �k3)

�k+13

�k+13

�k3

prox���2
1
� f3

(.)

1 step delay

(39b)

(39c)

u�+13

(u�3 , z�, �̃�3)

z�+13
�̃�+13

�k+13

uopt3

1
n

n

∑
i=1

u�+1
i

Figure 3: Schematic of the proposed distributed computational framework.

@µ

@t
= r · (µrV) + ��1�µ, µ(x, 0) = µ0(x) (40)

where V (x1, x2) =
1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
and x = (x1, x2) 2 [�2, 2]2. As shown in [14], the stationary measure

is µ1(x) / exp(��V (x))dx, which for our choice of V , is bimodal (see Fig. 4).

Figure 4: The analytical stationary solution
for the FPK equation (40), given by µ1 =
1
Z exp

�
��

�
(1 + x4

1)/4 + (x2
2 � x2

1)/2
��

dx, where
Z is the normalization constant.

Here, n = 2 and by looking at Table 1, we chose

F1(µ) = hVk,µi (41a)

F2(µ) =
⌦
��1 logµ,µ

↵
(41b)

where the drift potential vector Vk 2 RN is given by Vk(i) :=
V
�
xi
k

�
, i = 1, . . . , N . Then, we artificially relabeled the

argument of the functionals F1 and F2 as µ1 and µ2, re-
spectively. Because F1 is linear in µ1, we use (23) with
�1(µ) = hVk�1+⌫k

1 ,µi to analytically compute the proximal
update µk+1

1 . The simulation parameters are considered to be
↵ = 12, ⌧ = 150, � = 1, and " = 5 ⇥ 10�2. We define
G2(µ2) := F2(µ2)+ h⌫k

2 ,µ2i = h��1 logµ2 +⌫k
2 ,µ2i, and

compute the proximal update µk+1
2 by (22). In this case, we

use the PROXRECUR algorithm from [14, Sec. III-B.1] with
algorithmic parameters, � = 10�4, � = 1, and L = 20 to solve
(22). Note that here instead of %k�1 as the first argument of the PROXRECUR algorithm in [14, Sec. III-B.1], we have
⇣k. For doing so, we generate N = 1681 samples from the initial distribution

µ0 =
1

5
N (m1,⌃) +

1

5
N (m2,⌃) +

1

5
N (m3,⌃) +

1

5
N (m4,⌃) +

1

5
N (m5,⌃)

with m1 = (1, 1)>, m2 = (�1,�1)>,m3 = (1,�1)>, m4 = (�1, 1)>, m5 = (0, 0)>, and ⌃ = 0.1I2. We use
N (m,⌃) to denote a multivariate Gaussian distribution with mean vector m and covariance matrix ⌃.

12

Wasserstein Consensus ADMM A PREPRINT

�k+11

�k+12
�k+13uopt1

uopt3

uopt2

�k+1

�k+1

�k+1(34)

proxW�
1
� �1

(.)

1 step delay

(19c)

(�k1, �k, �k1)

�k+11

�k+11

�k1

prox���2
1
� f1

(.)

1 step delay

(39b)

(39c)

u�+11

(u�1 , z�, �̃�1)

z�+11
�̃�+11

�k+11

uopt1

proxW�
1
� �2

(.)

1 step delay

(19c)

(�k2, �k, �k2)

�k+12

�k+12

�k2

prox���2
1
� f2

(.)

1 step delay

(39b)

(39c)

u�+12

(u�2 , z�, �̃�2)

z�+12
�̃�+12

�k+12

uopt2

proxW�
1
� �3

(.)

1 step delay

(19c)

(�k3, �k, �k3)

�k+13

�k+13

�k3

prox���2
1
� f3

(.)

1 step delay

(39b)

(39c)

u�+13

(u�3 , z�, �̃�3)

z�+13
�̃�+13

�k+13

uopt3

1
n

n

∑
i=1

u�+1
i

Figure 3: Schematic of the proposed distributed computational framework.

@µ

@t
= r · (µrV) + ��1�µ, µ(x, 0) = µ0(x) (40)

where V (x1, x2) =
1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
and x = (x1, x2) 2 [�2, 2]2. As shown in [14], the stationary measure

is µ1(x) / exp(��V (x))dx, which for our choice of V , is bimodal (see Fig. 4).

Figure 4: The analytical stationary solution
for the FPK equation (40), given by µ1 =
1
Z exp

�
��

�
(1 + x4

1)/4 + (x2
2 � x2

1)/2
��

dx, where
Z is the normalization constant.

Here, n = 2 and by looking at Table 1, we chose

F1(µ) = hVk,µi (41a)

F2(µ) =
⌦
��1 logµ,µ

↵
(41b)

where the drift potential vector Vk 2 RN is given by Vk(i) :=
V
�
xi
k

�
, i = 1, . . . , N . Then, we artificially relabeled the

argument of the functionals F1 and F2 as µ1 and µ2, re-
spectively. Because F1 is linear in µ1, we use (23) with
�1(µ) = hVk�1+⌫k

1 ,µi to analytically compute the proximal
update µk+1

1 . The simulation parameters are considered to be
↵ = 12, ⌧ = 150, � = 1, and " = 5 ⇥ 10�2. We define
G2(µ2) := F2(µ2)+ h⌫k

2 ,µ2i = h��1 logµ2 +⌫k
2 ,µ2i, and

compute the proximal update µk+1
2 by (22). In this case, we

use the PROXRECUR algorithm from [14, Sec. III-B.1] with
algorithmic parameters, � = 10�4, � = 1, and L = 20 to solve
(22). Note that here instead of %k�1 as the first argument of the PROXRECUR algorithm in [14, Sec. III-B.1], we have
⇣k. For doing so, we generate N = 1681 samples from the initial distribution

µ0 =
1

5
N (m1,⌃) +

1

5
N (m2,⌃) +

1

5
N (m3,⌃) +

1

5
N (m4,⌃) +

1

5
N (m5,⌃)

with m1 = (1, 1)>, m2 = (�1,�1)>,m3 = (1,�1)>, m4 = (�1, 1)>, m5 = (0, 0)>, and ⌃ = 0.1I2. We use
N (m,⌃) to denote a multivariate Gaussian distribution with mean vector m and covariance matrix ⌃.

12

μ∞ ∝ exp(−βV(x1, x2))dx1dx2

Distributed computation:

Wasserstein Consensus ADMM A PREPRINT

�k+11

�k+12
�k+13uopt1

uopt3

uopt2

�k+1

�k+1

�k+1(34)

proxW�
1
� �1

(.)

1 step delay

(19c)

(�k1, �k, �k1)

�k+11

�k+11

�k1

prox���2
1
� f1

(.)

1 step delay

(39b)

(39c)

u�+11

(u�1 , z�, �̃�1)

z�+11
�̃�+11

�k+11

uopt1

proxW�
1
� �2

(.)

1 step delay

(19c)

(�k2, �k, �k2)

�k+12

�k+12

�k2

prox���2
1
� f2

(.)

1 step delay

(39b)

(39c)

u�+12

(u�2 , z�, �̃�2)

z�+12
�̃�+12

�k+12

uopt2

proxW�
1
� �3

(.)

1 step delay

(19c)

(�k3, �k, �k3)

�k+13

�k+13

�k3

prox���2
1
� f3

(.)

1 step delay

(39b)

(39c)

u�+13

(u�3 , z�, �̃�3)

z�+13
�̃�+13

�k+13

uopt3

1
n

n

∑
i=1

u�+1
i

Figure 3: Schematic of the proposed distributed computational framework.

@µ

@t
= r · (µrV) + ��1�µ, µ(x, 0) = µ0(x) (40)

where V (x1, x2) =
1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
and x = (x1, x2) 2 [�2, 2]2. As shown in [14], the stationary measure

is µ1(x) / exp(��V (x))dx, which for our choice of V , is bimodal (see Fig. 4).

Figure 4: The analytical stationary solution
for the FPK equation (40), given by µ1 =
1
Z exp

�
��

�
(1 + x4

1)/4 + (x2
2 � x2

1)/2
��

dx, where
Z is the normalization constant.

Here, n = 2 and by looking at Table 1, we chose

F1(µ) = hVk,µi (41a)

F2(µ) =
⌦
��1 logµ,µ

↵
(41b)

where the drift potential vector Vk 2 RN is given by Vk(i) :=
V
�
xi
k

�
, i = 1, . . . , N . Then, we artificially relabeled the

argument of the functionals F1 and F2 as µ1 and µ2, re-
spectively. Because F1 is linear in µ1, we use (23) with
�1(µ) = hVk�1+⌫k

1 ,µi to analytically compute the proximal
update µk+1

1 . The simulation parameters are considered to be
↵ = 12, ⌧ = 150, � = 1, and " = 5 ⇥ 10�2. We define
G2(µ2) := F2(µ2)+ h⌫k

2 ,µ2i = h��1 logµ2 +⌫k
2 ,µ2i, and

compute the proximal update µk+1
2 by (22). In this case, we

use the PROXRECUR algorithm from [14, Sec. III-B.1] with
algorithmic parameters, � = 10�4, � = 1, and L = 20 to solve
(22). Note that here instead of %k�1 as the first argument of the PROXRECUR algorithm in [14, Sec. III-B.1], we have
⇣k. For doing so, we generate N = 1681 samples from the initial distribution

µ0 =
1

5
N (m1,⌃) +

1

5
N (m2,⌃) +

1

5
N (m3,⌃) +

1

5
N (m4,⌃) +

1

5
N (m5,⌃)

with m1 = (1, 1)>, m2 = (�1,�1)>,m3 = (1,�1)>, m4 = (�1, 1)>, m5 = (0, 0)>, and ⌃ = 0.1I2. We use
N (m,⌃) to denote a multivariate Gaussian distribution with mean vector m and covariance matrix ⌃.

12

Wasserstein Consensus ADMM A PREPRINT

Figure 5: Wasserstein distance between the solution
of (41a) i.e. µk

1 and the solution of (41b) i.e. µk
2 .

The resulting evolution of µ1 and µ2 are shown in Fig. 6; it
can be seen that after 5000 iterations of the outer layer ADMM
(19), both µ1 and µ2, tend to the known stationary solution µ1
given in Fig. 4. The Wasserstein distance between the solution
of (41a) i.e. µk

1 and the solution of (41b) i.e. µk
2 is shown in

5. Because we start from the same initial distribution for µ1

and µ2, W (µk
1 ,µ

k
2) at k = 0 is zero. We solve (39a) via the

gradient descent method with a fixed step size as 0.001. The
number of iterations of the inner layer ADMM given in (39)
is 3. The average time in five simulations is 323.51 sec. It is
remarkable that all simulations are performed on a same MacBook Air with Intel Core i5 CPU, 1.1 GHz, and 8 GB
RAM.

(a) Contour plots of the transient solution of the joint measure µ1

(b) Contour plots of the transient solution of the joint measure µ2

Figure 6: Evolution of the solution to the linear Fokker–Planck equation (40), with V (x1, x2) = 1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
. The

computational domain is [�2, 2]⇥ [�2, 2]. The color denotes the value of the plotted variable; see colorbar (dark red = high, light
yellow = low).

5.2 Aggregation Drift Equation

Next we consider a aggregation-drift equations of the form

@µ

@t
= r · (µrU �⇤ µ) +r · (µrV) (42)

where U(x) = |x|2/2� ln(|x|) and V (x) = �
1
4 ln(|x|). As shown in [20], the stationary measure, µ1(x), is a torus

with the inner and outer radius of Ri =
q

1
4 , and Ro =

q
1
4 + 1, respectively. As explained in [18], to avoid the

possible overshoot at the boundary, an artificial diffusion term as ��1�µ2 is added to the RHS of (42).

So, in this example we have three terms (interaction, drift, and diffusion). We choose to split (42) with the extra artificial
diffusion term to two as follow

@tµ = r · (µrU �⇤ µ)| {z }
i=1

+r · (µrV) + ��1�µ2

| {z }
i=2

.

So, n = 2 and by looking at Table 1, we chose

F1(µ) = hUkµ,µi (43a)

F2(µ) =
⌦
Vk + ��11>µ,µ

↵
(43b)

13

Wasserstein Consensus ADMM A PREPRINT

�k+11

�k+12
�k+13uopt1

uopt3

uopt2

�k+1

�k+1

�k+1(34)

proxW�
1
� �1

(.)

1 step delay

(19c)

(�k1, �k, �k1)

�k+11

�k+11

�k1

prox���2
1
� f1

(.)

1 step delay

(39b)

(39c)

u�+11

(u�1 , z�, �̃�1)

z�+11
�̃�+11

�k+11

uopt1

proxW�
1
� �2

(.)

1 step delay

(19c)

(�k2, �k, �k2)

�k+12

�k+12

�k2

prox���2
1
� f2

(.)

1 step delay

(39b)

(39c)

u�+12

(u�2 , z�, �̃�2)

z�+12
�̃�+12

�k+12

uopt2

proxW�
1
� �3

(.)

1 step delay

(19c)

(�k3, �k, �k3)

�k+13

�k+13

�k3

prox���2
1
� f3

(.)

1 step delay

(39b)

(39c)

u�+13

(u�3 , z�, �̃�3)

z�+13
�̃�+13

�k+13

uopt3

1
n

n

∑
i=1

u�+1
i

Figure 3: Schematic of the proposed distributed computational framework.

@µ

@t
= r · (µrV) + ��1�µ, µ(x, 0) = µ0(x) (40)

where V (x1, x2) =
1
4

�
1 + x4

1

�
+ 1

2

�
x2
2 � x2

1

�
and x = (x1, x2) 2 [�2, 2]2. As shown in [14], the stationary measure

is µ1(x) / exp(��V (x))dx, which for our choice of V , is bimodal (see Fig. 4).

Figure 4: The analytical stationary solution
for the FPK equation (40), given by µ1 =
1
Z exp

�
��

�
(1 + x4

1)/4 + (x2
2 � x2

1)/2
��

dx, where
Z is the normalization constant.

Here, n = 2 and by looking at Table 1, we chose

F1(µ) = hVk,µi (41a)

F2(µ) =
⌦
��1 logµ,µ

↵
(41b)

where the drift potential vector Vk 2 RN is given by Vk(i) :=
V
�
xi
k

�
, i = 1, . . . , N . Then, we artificially relabeled the

argument of the functionals F1 and F2 as µ1 and µ2, re-
spectively. Because F1 is linear in µ1, we use (23) with
�1(µ) = hVk�1+⌫k

1 ,µi to analytically compute the proximal
update µk+1

1 . The simulation parameters are considered to be
↵ = 12, ⌧ = 150, � = 1, and " = 5 ⇥ 10�2. We define
G2(µ2) := F2(µ2)+ h⌫k

2 ,µ2i = h��1 logµ2 +⌫k
2 ,µ2i, and

compute the proximal update µk+1
2 by (22). In this case, we

use the PROXRECUR algorithm from [14, Sec. III-B.1] with
algorithmic parameters, � = 10�4, � = 1, and L = 20 to solve
(22). Note that here instead of %k�1 as the first argument of the PROXRECUR algorithm in [14, Sec. III-B.1], we have
⇣k. For doing so, we generate N = 1681 samples from the initial distribution

µ0 =
1

5
N (m1,⌃) +

1

5
N (m2,⌃) +

1

5
N (m3,⌃) +

1

5
N (m4,⌃) +

1

5
N (m5,⌃)

with m1 = (1, 1)>, m2 = (�1,�1)>,m3 = (1,�1)>, m4 = (�1, 1)>, m5 = (0, 0)>, and ⌃ = 0.1I2. We use
N (m,⌃) to denote a multivariate Gaussian distribution with mean vector m and covariance matrix ⌃.

12

Runtime 99.89 s on Macbook Air 1.1 GHz intel i5 8GB RAM

Experiment #2 Centralized computation:

Aggregation-drift-diffusion nonlinear PDE

Distributed computation:

Carrillo, Craig, Wang and Wei, FOCM, 2021

Wasserstein Consensus ADMM A PREPRINT

Figure 7: Wasserstein distance between the solution
of (41a) i.e. µk

1 , and the solution of (43b) i.e. µk
2 .

where the drift potential vector Vk 2 RN and the symmetric
matrix Uk are given by Vk(i) := V

�
xi
k

�
, i = 1, . . . , N and

Uk(i, j) := U
⇣
xi
k � xj

k

⌘
, i, j = 1, . . . , N . Then, like the

previous example we artificially relabeled the argument of the
functionals F1 and F2 as µ1 and µ2, respectively. Because F1

is linear in µ1, we use (23) with �1(µ1) = hUkµ1 + ⌫k
1 ,µ1i

to analytically compute the proximal update µk+1
1 . We define

G2(µ2) := F2(µ2)+ h⌫k
2 ,µ2i = hVk+��11>µ2+⌫k

2 ,µ2i,
and compute the proximal update µk+1

2 by (22). Using (27), we
modify the PROXRECUR algorithm given in [14, Sec. III-B.1]
and solve the proximal recursion for the porous medium equation.

The resulting evolution of µ1 and µ2 are shown in Fig. 8; it can be seen that after 10000 iterations of the outer layer
ADMM (19), both µ1 and µ2, tend to the known stationary solution (torus with inner and outer radius of 0.5 and

q
5
4).

The Wasserstein distance between the solution of (43a) i.e. µk
1 and the solution of (43b) i.e. µk

2 is shown in Fig. 7. All
the simulation parameters and the initial distributions are the same as the previous example and the average time in five
simulations is 430.085 sec.

(a) Contour plots of the transient solution of the joint measure µ1

(b) Contour plots of the transient solution of the joint measure µ2

Figure 8: Evolution of the solution to the aggregation-drift equations (42), with U(x) = |x|2/2� ln(|x|) and V (x) = � 1
4 ln(|x|).

The computational domain is [�2, 2]⇥ [�2, 2]. The color denotes the value of the plotted variable; see colorbar (dark red = high,
light yellow = low).

6 Conclusions

References

[1] Martial Agueh and Guillaume Carlier. Barycenters in the Wasserstein space. SIAM Journal on Mathematical

Analysis, 43(2):904–924, 2011.

[2] David Alvarez-Melis, Yair Schiff, and Youssef Mroueh. Optimizing functionals on the space of probabilities with
input convex neural networks. arXiv preprint arXiv:2106.00774, 2021.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space of

probability measures. Springer Science & Business Media, 2008.

[4] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on Machine

Learning, pages 146–155. PMLR, 2017.

[5] HH Bauschke and SG Kruk. Reflection-projection method for convex feasibility problems with an obtuse cone.
Journal of Optimization Theory and Applications, 120(3):503–531, 2004.

14

Wasserstein Consensus ADMM A PREPRINT

Figure 7: Wasserstein distance between the solution
of (41a) i.e. µk

1 , and the solution of (43b) i.e. µk
2 .

where the drift potential vector Vk 2 RN and the symmetric
matrix Uk are given by Vk(i) := V

�
xi
k

�
, i = 1, . . . , N and

Uk(i, j) := U
⇣
xi
k � xj

k

⌘
, i, j = 1, . . . , N . Then, like the

previous example we artificially relabeled the argument of the
functionals F1 and F2 as µ1 and µ2, respectively. Because F1

is linear in µ1, we use (23) with �1(µ1) = hUkµ1 + ⌫k
1 ,µ1i

to analytically compute the proximal update µk+1
1 . We define

G2(µ2) := F2(µ2)+ h⌫k
2 ,µ2i = hVk+��11>µ2+⌫k

2 ,µ2i,
and compute the proximal update µk+1

2 by (22). Using (27), we
modify the PROXRECUR algorithm given in [14, Sec. III-B.1]
and solve the proximal recursion for the porous medium equation.

The resulting evolution of µ1 and µ2 are shown in Fig. 8; it can be seen that after 10000 iterations of the outer layer
ADMM (19), both µ1 and µ2, tend to the known stationary solution (torus with inner and outer radius of 0.5 and

q
5
4).

The Wasserstein distance between the solution of (43a) i.e. µk
1 and the solution of (43b) i.e. µk

2 is shown in Fig. 7. All
the simulation parameters and the initial distributions are the same as the previous example and the average time in five
simulations is 430.085 sec.

(a) Contour plots of the transient solution of the joint measure µ1

(b) Contour plots of the transient solution of the joint measure µ2

Figure 8: Evolution of the solution to the aggregation-drift equations (42), with U(x) = |x|2/2� ln(|x|) and V (x) = � 1
4 ln(|x|).

The computational domain is [�2, 2]⇥ [�2, 2]. The color denotes the value of the plotted variable; see colorbar (dark red = high,
light yellow = low).

6 Conclusions

References

[1] Martial Agueh and Guillaume Carlier. Barycenters in the Wasserstein space. SIAM Journal on Mathematical

Analysis, 43(2):904–924, 2011.

[2] David Alvarez-Melis, Yair Schiff, and Youssef Mroueh. Optimizing functionals on the space of probabilities with
input convex neural networks. arXiv preprint arXiv:2106.00774, 2021.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the space of

probability measures. Springer Science & Business Media, 2008.

[4] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference on Machine

Learning, pages 146–155. PMLR, 2017.

[5] HH Bauschke and SG Kruk. Reflection-projection method for convex feasibility problems with an obtuse cone.
Journal of Optimization Theory and Applications, 120(3):503–531, 2004.

14

lim
β−1↓0

μ∞ = Unif ($)

Annulus with inner radius 1/2 and outer radius 5/2

Experiment #2 (contd.)

42

100 run for statistics each of the 4 ways of splitting: (ways in general)2n − n − 1

av. runtime = 108.99 s

av. runtime = 289.87 s

av. runtime = 285.32 s

av. runtime = 294.06 s

